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Abstract

We propose a new method for refining 6-DOF pose of rigid trans-
parent objects. The algorithm is based on minimizing the dis-
tance between edges in a test image and a set of edges produced
by the training model with a specific pose. The model is scanned
with a monocular camera and a 3D sensor such as a Kinect de-
vice. The pose is estimated from a monocular image or a stereo
pair. The method does not require a CAD model of the object.
We demonstrate experimental results on a set of kitchen items
essential for any home and office environment.
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1. INTRODUCTION

Perception for personal robotics is a wide and important appli-
cation of computer vision. A personal robot is expected to ef-
ficiently interact with the environment. In particular, it has to
be able to detect a specific object in a scene and find its pose
for grasping and manipulation. Recent advances in object recog-
nition and pose estimation [1] demonstrate good results with a
monocular camera for textured objects. SIFT features are used to
find similarities between training and test textured image patches
and then geometric validation is used to filter out false matches.
Since the training set contains 3D coordinates of all features, pose
estimation in this approach is done by solving a PnP problem on
SIFT matches. However if an object has few textured features, lo-
cal descriptors will produce few matches and detection will fail.
Moreover, if only a small part of the object is textured, it will be
detected but there may be a substantial error in the pose estima-
tion. Also, this method does not work with transparent objects.

Both textureless and transparent objects such as cups, dishes, sta-
plers etc. are an essential part of home and office environment.
The problem of estimating the pose of such objects is important
for personal robotics. While recent developments in structured
light sensors such as Kinect shows promising results in finding
the pose of textureless objects, this type of technology does not
work with specular and transparent surfaces. Our work in this
paper is largely influenced by the methods for textureless objects
coming from industrial robotics [2] that use a CAD model of an
object to estimate its pose from a monocular camera by project-
ing the model to a test image and comparing object features with
image edges. While CAD models of manipulated objects in in-
dustrial settings are usually available anyway, CAD models of all
objects in the personal space are hard to capture.

We present an algorithm for refining 6-DOF pose of a transparent
object using edge features. The method does not require a CAD-
model, it needs a 3D scan of an object including a point cloud and
images registered to each other. We show that the method can be
used for accurate pose estimation of transparent rigid objects.

2. RELATED WORK

Transparent objects are very challenging objects in computer vi-
sion because their appearance in an image largely depends on a
background. Also it is hard to capture a 3D model or a point
cloud for transparent objects due to limitations in technologies
of existing 3D sensors and because reconstruction of transparent
objects is still a very hard problem [3].

The algorithm for detection and reconstruction of unknown trans-

parent objects was proposed in [4]. The algorithm uses two views
of a test scene captured by a ToF camera. The algorithm is insen-
sitive to changes in illumination and it was applied for grasping of
isolated transparent objects by a robot. Grasping was successful
in 41% of reconstructed objects and failed attempts are explained
by errors in objects reconstruction and pose estimation.

The algorithm for pose estimation of transparent objects from
two views of a test scene was proposed in [5]. Accurate pose
estimation was achieved but the objects are required to stay on a
table plane and they should be separated from each other. So the
algorithm is not able to estimate 6-DOF pose.

Kinect sensor is used for pose estimation and recognition of
transparent objects in [6]. However, results are reported only
in case when objects are assumed to stay on a table plane. So
accuracy in case of 6-DOF pose estimation is unclear.

Specularities are important features when working with transpar-
ent objects and there are very promising approaches to pose es-
timation [7, 8, 9] using this cue. However, these algorithms of
pose estimation require a triangulated mesh or a CAD model of
an object and they were evaluated with textureless objects only.

Texture features like SIFT are not suitable when working with
textureless and transparent objects because such objects don’t
have their own texture. Computer vision research [10] and psy-
chological studies [11] show that edges and contours of objects
are important features and they can be used successfully for the
object recognition problem. For example, humans can recognize
objects from rough pencil sketches although texture is missing.
This cue is available both for transparent and textureless objects
and it makes the problem of pose estimation of transparent ob-
jects related to pose estimation of textureless objects.

The problem of untextured pose estimation has a long history in
computer vision. See [12] for a detailed overview of the 2D-
3D pose estimation problem. [13] shows that it is possible to
estimate a pose of a textureless object by using single-view object
detection algorithms. However the 2D object representation used
in this method is viewpoint-dependent, so a set of detectors has
to be trained for different viewpoints. Running all detectors is
infeasible in the general case so pose clustering is used [14, 13,
15], first to make a rough estimation of the pose and then refine
it by running a smaller set of detectors. The pose corresponding
to the most confident detector is returned as an estimation of the
object pose. But the accuracy of this estimation is bounded by
the number of detectors that also defines the computational cost.

General multi-view approaches and a 3D model of an object are
required to balance between the computational cost and the pose
estimation accuracy. The idea to use a 3D representation of an ob-
ject for recognition is going back to early computer vision of 70’s
and 80’s, see, for example, [16]. Approaches [17, 2, 18] utilize
this idea and they can estimate a pose of a textureless object quite
accurately. Algorithms [17, 18] find the closest training pose and
run a local optimization of it using a CAD model of an object.
High-quality CAD-models are hard to obtain and although there
are some CAD-models of typical household objects (like a cup
or a bottle), models are not available for all specific objects that
robots need to grasp in a household environment.

Our approach to pose refinement step is similar to [17, 18] and
also based on edges cue. However, it does not require a CAD
model and it is able to estimate 6-DOF pose of transparent ob-
jects.
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3. PROPOSED APPROACH

To solve the considered problem we divide it to following tasks:

1. Create a 3D model which allows to generate object edgels
(points on edges) for different poses. Our model contains
a 3D object model and a 3D edge model. The 3D object
model is a point cloud of the whole object and it is used to
generate silhouette edges. The 3D edge model is a point
cloud with points on surface edges, that is edges created by
depth discontinuities or texture.

2. Determine a cost function which estimates dissimilarity be-
tween generated edgels and the observed test data and then
minimize the cost function by varying parameters that de-
termine pose of the object.

We will address all of these steps in the following subsections.

3.1 Creation of the 3D model

There are no stable ways to estimate depth or produce point
clouds for transparent objects [3]. So we take a copy of the ob-
ject, paint it with a color and use the painted object in the model
creation pipeline.

The 3D object model is created automatically from the train data.
We scan each object on a planar surface with a Kinect device.
Two fiducial markers consisting of grids of circles are placed in
the field of view to provide accurate registration of frames. Depth
map from Kinect allows us to segment the plane and calculate the
object mask in each image.

We illustrate the algorithm of the surface edge model creation
using a textureless object that has many surface edges (Fig. 1).
First, we extract 3D points that correspond to surface edges in
each frame, then we register point clouds from different frames,
and, finally, we build a surface edge model.

Detecting edges in each frame

1. Find edges on each image of the object using Canny edge
detector . Then find edges of the object by intersecting the
detected edges with the object mask.

2. Select the points from the 3D cloud that correspond to im-
age edges. Our point cloud is interpolated to the size of the
train image and so there is a bijection between 3D points
and image pixels. As a result we get a 3D edge model for
each training image.

Registering point clouds

1. Transform all models to the same coordinate system asso-
ciated with the first frame, using the poses from the fiducial
markers. The corresponding points from different frames
would coincide with each other in the ideal case but there
are always some deviations in practice due to noise (see the
Fig. 2A).

2. Register transformed point clouds. There is a classic and
widely used algorithm Iterative Closest Point (ICP) for reg-
istration of two point clouds [19, 20]. Global approaches
like [21] are used for registration of multiple point clouds
because they can distribute registration error between all
point clouds evenly. We have a good initial alignment of
point clouds using the poses from the fiducial markers so
we have used more simple global algorithm [22] with LM-
ICP [23] to register pairs of point clouds.

Creating a surface edge model

1. Partition all transformed points into groups where each
group corresponds to the same point of the object. This

allows to get more accurate coordinates of the object point
by its noised observations. Partitioning is done by solving
the problem of k-partite matching which is a generalization
of the bipartite matching for the case of k-partite graphs.
It is known to be an NP-hard problem [24] so we used a
heuristic algorithm based on [25].

2. For each group compute accurate coordinates of the model
point using robust estimation of location [26] e.g. the mini-
mum covariance determinant estimator (MCD) [27]. The
constructed model is given in the Fig. 2B and it repre-
sents edges of the object much better than transformed point
clouds in Fig. 2A.

3. Downsample the constructed 3D edge model. The 3D edge
model of the whole object is given in the Fig. 2C. It con-
tains many close points that don’t give additional informa-
tion. So we keep 10% of points to lower computational
costs of further processing. It is done by a trivial adaptation
of the Douglas-Peucker algorithm [28] for this task. The
downsampled model is given in the Fig. 2D.

It is important to note that as a result of the k-partite matching
the silhouette edges, which presence depends on a point of view,
will be automatically filtered out as they will not have correspon-
dences in different frames.

We group all surface edge points into contours by proximity. 3D
orientation of a contour at a point can be estimated as direction of
the tangent vector to the 3D contour at this point. We do this by
generalizing [29] to the 3D case by means of multi-dimensional
robust statistics [26]. When the model is transformed in 3D
space, orientations of points are transformed as usual 3D points.
We use the contours to calculate the orientation in each projected
edgel that can be used in the cost function.

The algorithm for constructing a silhouette model is similar. We
register dense point clouds that we obtain from a Kinect by using
the same algorithm (ICP registration with the initial pose from
the fiducial markers). The coordinate system origin is placed into
the mass center of the joint point cloud.

In order to guarantee that poses that are close to each other are
produced by close rotation and translation vectors, we place the
coordinate system origin into the center of mass for each of the
objects.

3.2 The cost function

The cost function is defined by comparing detected test image
edges with projections of 3D surface and silhouette edges that
depend on the object pose. Given a rotation and translation of
the object, we transform the point cloud into the test camera ref-
erence frame. Surface edges are projected into the image and
they give us 2D surface edges because transparent objects don’t
have self-occlusions. In order to get silhouette edges, we project
a dense point cloud into a test image, apply several closing opera-
tions to the resulting set of pixels and find the borders of the con-
nected components. These borders constitute silhouette edges.

Now we want to construct a cost function that compares two sets
of edges in an image. Let E = {ej} be a set of pixels that belong
to edges of a test image, T = {ti} is a set of the model points
projected into the image plane. One of the most popular cost
functions is Chamfer Matching (CM):

dCM (E, T ) =
1

|T |
∑

ti∈T

min
ej∈E

||ti − ej ||, (1)

where || · || is Eucledian norm. However, mean is not a robust
statistic because a single outlier can affect the final value severely.
Edge detection is an unstable operation that produces a lot of
variation, especially in edge endpoints. In order to overcome this
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Figure 1: Example of an object to be modeled.

Figure 2: Creation of the surface edge model. (A) All train point clouds transformed to the same coordinate system. (B, C) Refined
and denoised point cloud with k-partite matching and robust statistics. (D) Downsampled point cloud which approximates the full model
well.
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issue we use the Partial Directed Hausdorff (PDH) distance [30]:

dH(E, T ) = Kth
ti∈T min

ej∈E
||ti − ej ||. (2)

Here Kth
ti∈T (X) is the Kth ranked value in the sorted set X.

Throughout the paper we use K = 0.8|T |, where |T | is the num-
ber of elements in T . However, this distance can be set to zero by
placing the object infinitely far away from the camera. It means
the global minimum will be achieved in the incorrect pose for this
distance. So we introduce a Normalized PDH (NPDH) distance:

dH(E, T ) =
1√

detC
Kth

ti∈T min
ej∈E

||ti − ej ||, (3)

where C is the covariance matrix of the projections of the point
cloud into the image.

Both CM and PDH distances are known to behave incorrectly
in clutter. Oriented Chamfer Matching (OCM) [10] is known to
handle clutter better. However, it is more computationally expen-
sive, so we use NPDH throughout the paper.

The PDH cost function is computed separately for surface and
silhouette edgels. The resulting distances are added with differ-
ent weights: 2/3 for surface and 1/3 for silhouette edges. The
weight for surface edges is higher because surface edges are more
stable: they are constructed by fusing edgels from many training
frames, so we know that each surface edge is found robustly by
the edge detector.

The cost function 3 is minimized by the global optimization algo-
rithm DIRECT [31] from the NLopt library [32] by varying the 6
parameters defining pose of the object: a translation and rotation
vectors.

4. EXPERIMENTAL RESULTS

The algorithm was tested on the base of 5 transparent objects. We
take 5 pairs of kitchen items and paint one object in each pair in
white color to make it opaque because there are no reliable way
to scan a transparent object [3]. We use the painted object to scan
it with Kinect to create object models. Each training sequence
contains 12 frames with different poses of the table relative to
Kinect. The asymmetric circles pattern from the OpenCV library
was used as the fiducial marker to estimate poses between frames.
To create test data we used the corresponding transparent objects
captured by a calibrated stereo pair of Canon EOS 40D cameras
from a distance about 1 meter. Images were resized to resolution
of about one megapixel (1166x778). Each test object is placed
exactly as the corresponding training object relatively to the fidu-
cial marker, so we know the ground truth.

The objective of these experiments it to investigate how accurate
the initial guess about the object pose should be for the algo-
rithm to produce a stable correct result. We ran the algorithm
with many different initial guesses generated randomly. In par-
ticular, the correct pose was translated in random direction on the
specified distance d and rotated in random direction on the spec-
ified angle α. Each experiment with specific values of d and α
was repeated 50 times and we take 27 different combinations of
these values. All objects in the test base have rotation symmetry
and this was taken into account when evaluating pose returned by
the algorithm but this knowledge was not used by the algorithm
itself.

The example of the results is given in Fig. 3. Points of objects’
models are colored. They are projected into the image plane us-
ing initial hypothesis of objects’ poses and poses refined by the
algorithm. Initial poses are quite far away from correct poses.
However, final poses are accurate enough for grasping.

We run the algorithm on all 5 objects to see how often the al-
gorithm returns a correct pose. We consider the pose estima-
tion successful if the difference between the returned and correct
poses is less than 2 cm in translation and 10 degrees in rotation.

Figure 3: Images from a stereo pair with the projected poses
found with the algorithm, initial (upper row) and refined (bottom
row).

Fig. 4 shows the statistics for all 5 objects. The percent of runs
when the algorithm succeeded is plotted on the y-axis. The chart
shows that if the initial translation error is less than 2 cm, we can
successfully reconstruct the pose in more than 80% of the cases.
Black area in Kinect depth map that corresponds to specular and
transparent surfaces can give us a hypothesis about the object lo-
cation. This information can be used to generate a good initial
guess about the translation vector. If the initial error of the trans-
lation vector is 2cm, the rate of successful reconstructions (aver-
aged over all angles) is 88%, if the initial translation error is 5cm,
then the rate of successful reconstructions is 77%. Note that part
of the error comes from poses that are upside-down to the ground
truth: since many objects are close to cylindrical shape, the final
result can put the top of the glass to the bottom.

See more examples at Fig. 5. Also see Fig. 6 for example of the
algorithm failure. The algorithm returned the pose which is up-
side down of correct one because the object has nearly cylindrical
shape.
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Figure 4: Statistics of the algorithm working on rigid transparent
objects. Pose can be refined successfully if an initial pose is not
very far from the correct pose. The algorithm is robust to incor-
rect initial rotation but it is more sensitive to initial translation.

The proposed algorithm can refine poses of transparent objects in
some cases, but it has several limitations. The approach demands
good initial hypothesis of the object pose, otherwise the search
for the global minimum takes too much time. The algorithm is
unstable in clutter e.g. if the object is surrounded by other ob-
jects. But in the case of low clutter the algorithm works with
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Figure 5: Examples of successful pose refinement for different
objects. Left images are initial poses and right images are refined
poses. Only one image from the stereo pair is shown.

Figure 6: Example of the algorithm failure due to cylindrical
shape of the object. Two images from a stereo pair are shown:
initial pose (upper row) and refined pose (lower row).

sufficient speed and quality to be applied for pose refinement of
rigid transparent objects.

Another limitation of the proposed method is using a calibrated
stereo pair for generating test images instead of a single monocu-
lar camera. The main obstacle for a monocular camera is ambigu-
ity that cannot be resolved from a single image without additional
assumptions or priors.

There exist significantly different poses that have very good pro-
jections to a test image and it is specificity of transparent objects.
For example, two different poses of an opaque object are shown
in the Fig. 7 and there is no ambiguity between them. However, if
the same object is transparent then there are two different plausi-
ble interpretations of the same projection (Fig. 8) because trans-
parent objects don’t have self-occlusions and all edges are visible.

Figure 7: Two different poses of an opaque object. There is no
ambiguity between them because different edges are visible in
different poses.

Figure 8: Ambiguous projection of a transparent object. Two
plausible poses of the object are possible because all edges are
visible on the same image.

We evaluated the algorithm with a monocular camera on the same
dataset using only left images of our stereo test set. The statistics
of pose estimation is shown in the Fig. 9. One can see that there
is a significant degradation of accuracy compared to the stereo
case.
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Figure 9: Statistics of the algorithm working when using a
monocular camera only. The results degrade significantly com-
paring to the stereo camera due to inherent ambiguity of pose
estimation of transparent objects from a single view.
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5. CONCLUSION

The paper presents the algorithm for refining the 6-DOF pose of
transparent objects. Our method only requires a calibrated stereo
pair during the online stage. Given an initial estimate that has an
error in translation less than 5cm, the rate of accurate pose esti-
mations is higher than 75%. The method allows to grasp trans-
parent objects without using expensive sensors such as TOF cam-
eras.
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